

Sistema de Información de Exámenes, SINFEX

ÁCIDOS GRASOS OMEGA 3 (ALA, EPA, DHA y DPA) POR GC/MS SUSPENDIDO TEMPORALMENTE

Actualizado en Abril 2025 por BQ. Catalina Abarca M. Revisado y Aprobado por Dr. Fidel Allende S.

Código del Examen : 2425

Nombres del Examen : Ácidos grasos Omega 3 (ALA, EPA, DHA y DPA) por GC/MS

Laboratorios de Procesamiento

Laboratorio	Días de Procesamiento	Plazo de Entrega de Resultados	
Laboratorio CMSJ HPLC-Toxicología (Toxicología)	Según demanda	15 días hábiles	

Preparación del Paciente : Requiere ayuno de 12 horas

Muestra Requerida : ■ Suero

Recolectar mínimo 2 mL de sangre en un tubo tapa roja (sin anticoagulante). Centrifugar **antes de 45 minutos** post extracción. Separar mínimo 1 mL suero a un tubo eppendorf y enviarlo al laboratorio refrigerado.

Estabilidad de la Muestra¹

Muestra	T° Ambiente	Refrigerada	Congelada	
	(20 - 25 °C)	(2 - 8 °C)	(-20°C)	
Suero	Sin información	3 día	3 meses	

Condiciones de Envío al Laboratorio : *Dentro de Santiago y en el día

Sangre Total: Ambiente NO/ Refrigerada NO/ Congelada NO Suero: Ambiente NO/ Refrigerada SI/ Congelada SI

*Desde fuera de Santiago

Suero: Ambiente NO/ Refrigerada NO/ Congelada SI

*Sólo si el tiempo de traslado cumple con la estabilidad de la muestra.

Método Utilizado : Cromatografía de Gas con Espectrometría de Masa (GC/MS)

Intervalo de Referencia 1

: A continuación se detalla cada ácido graso contemplado en el examen y su

intervalo de referencia:

	Intervalo de referencia (nmol/mL)			
Ácido graso	<1 año	1 - 18 años	≥ 18 años	
Ácido Alfa-linolénico (ALA)	10 - 190	20 - 120	50 - 130	
Ácido Eicosapentaenoico (EPA)	2 - 60	8 - 90	14 - 100	
Ácido Docosapentaenoico (DPA)	6 - 110	30 - 270	20 - 210	
Ácido Docosahexaenoico (DHA)	10 - 220	30 - 160	30 - 250	

Valor Crítico : No aplica.

Sistema de Información de Exámenes, SINFEX

Parámetros de Desempeño

,	Precisión Intra-ensayo (CV%)		Precisión Inter-ensayo (CV%)			
Ácido graso	10	50	100	10	50	100
	μg/mL	μg/mL	μg/mL	μg/mL	μg/mL	μg/mL
ALA	1,27	1,62	1,20	0,46	0,90	2,48
EPA	0,85	0,55	0,59	3,22	3,93	0,80
DPA	0,83	0,66	0,63	9,15	8,34	3,29
DHA	0,80	0,59	0,55	7,05	7,54	4,13

Información Clínica

Los ácidos grasos poli-insaturados de cadena larga (LC-PUFAs) presentan una cadena hidrocarbonada mayor a 18 átomos de carbono y dos o más enlaces dobles. Se clasifican en 2 familias: Omega-3 (ω -3) y Omega-6 (ω -6), según la posición de su primer doble enlace².

Las familias ω -3 y ω -6 comparten una vía metabólica común en la que el paso limitante son las desaturasas d5 y d6. Estudios recientes demuestran que polimorfismos de estas enzimas explican hasta un 30% de la variación en los niveles poblacionales de LC-PUFAs en plasma. El precursor de las formas más complejas de ácidos ω -3 (EPA, DPA y DHA) es el ácido α -linolenico (ALA, C18:3 ω -3), considerado como un ácido graso esencial en los seres humanos y otros mamíferos superiores, por lo que puede obtenerse únicamente de la dieta^{2,3}.

Debido a sus características estructurales, los LC-PUFAs son especialmente importantes para la integridad de las membranas celulares, la transducción intracelular de señales y la regulación de la transcripción génica 1 . En particular, los ω -3 LC-PUFAs han sido vinculados con efectos pleiotrópicos regulatorios en los procesos asociados a inflamación crónica (induciendo la producción de mediadores anti-inflamatorios), enfermedades cardiovasculares (participando en la regulación de los niveles plasmáticos de triglicéridos y colesterol HDL, disminuyendo la agregación plaquetaria y evitando la acumulación de colesterol en la placa ateromatosa), cáncer (induciendo la apoptosis de células tumorales) y neurodegeneración-neurodesarrollo (actuando como componentes estructurales fundamentales del SNC, como factores de transcripción de genes clave en el neurodesarrollo y como moduladores de la transmisión sináptica, especialmente la dopaminérgica) 4,5 .

Las deficiencias son comúnmente causadas por una ingesta inadecuada de lípidos ya sea por una dieta desbalanceada, por la nutrición parenteral de largo plazo o por mal absorción intestinal ¹.

Referencias

- 1. Test ID: FAPEP. Fatty acid profile, essential, serum. Revisado: 30 de Marzo del 2013.http://www.mayomedicallaboratories.com/test-catalog/Specimen/82426.
 - 2. Schuchardt, J.P, Huss, M., Stauss-Grabo, M. y Hahn, A. (2010). Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur. J. Pediatr. 169,149-164.
 - 3. Wallis, J.G., Watts J.L. y Browse. J. (2002). Polyunsaturated fatty acid synthesis: what will they think of next?. Trends Biochem. Sci. 27,467-473.
 - 4. Chapkin, R., McMurray, D., Davidson, L. Patil, B.S., Fan, Y. and Lupton., J.R. (2008). Bioactive dietary long chain fatty acids: Emerging mechanisms of Action. Br J Nutr. 100, 1152-1157.
 - 5. Torrejon, C., Jung, U.J. and Deckelbaum R.J. (2007). N-3 Fatty Acids and Cardiovascular Disease: Actions and Molecular Mechanisms. Prostaglandins Leukot Essent Fatty Acids. 77, 319-326.